Part Number Hot Search : 
F4360 ACP102E RF103 ACA2786 BC547BU EFS2ACD SB107 MU356A
Product Description
Full Text Search
 

To Download UB3006 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 UB3006 n-ch 30v fast switching mosfets symbol parameter rating units v ds drain-source voltage 30 v v gs gate-sou r ce voltage 20 v i d @t c =25 continuous drain current, v gs @ 10v 1 90 a i d @t c =100 continuous drain current, v gs @ 10v 1 58 a i d @t a =25 continuous drain current, v gs @ 10v 1 15 a i d @t a =70 continuous drain current, v gs @ 10v 1 12 a i dm pulsed drain current 2 180 a eas single pulse avalanche energy 3 252 mj i as avalanche current 48 a p d @t c =25 total power dissipation 4 74 w p d @t a =25 total power dissipation 4 2 w t stg storage temperature range -55 to 150 t j operating junction temperature range -55 to 150 symbol parameter typ. max. unit r ja thermal resistance junction-ambient (steady state) 1 --- 62 /w r jc thermal resistance junction-case 1 --- 1.68 /w id 30v 6m ? 90a the UB3006 is the highest performance trench n-ch mosfets with extreme high cell density , which provide excellent rdson and gate charge for most of the synchronous buck converter applications . the UB3006 meet the rohs and green product requirement , 100% eas guaranteed with full function reliability approved. z advanced high cell density trench technology z super low gate charge z excellent cdv/dt effect decline z 100% eas guaranteed z green device available general description features applications z high frequency point-of-load synchronous buck converter for mb/nb/umpc/vga z networking dc-dc power system z load switch absolute maximum ratings thermal data to263 pin configuration product summery bv dss r ds(on)
2 n-ch 30v fast switching mosfets symbol parameter conditions min. typ. max. unit bv dss drain-source breakdown voltage v gs =0v , i d =250ua 30 --- --- v bv dss / t j bvdss temperature coefficient reference to 25 , i d =1ma --- 0.028 --- v/ r ds(on) static drain-source on-resistance 2 v gs =10v , i d =30a --- 4.5 6 m v gs =4.5v , i d =15a --- 7.5 9 v gs(th) gate threshold voltage v gs =v ds , i d =250ua 1.2 1.5 2.5 v v gs(th) v gs(th) temperature coefficient --- -6.16 --- mv/ i dss drain-source leakage current v ds =24v , v gs =0v , t j =25 --- --- 1 ua v ds =24v , v gs =0v , t j =55 --- --- 5 i gss gate-source leakage current v gs = 20v , v ds =0v --- --- 100 na gfs forward transconductance v ds =5v , i d =30a --- 43 --- s r g gate resistance v ds =0v , v gs =0v , f=1mhz --- 1.6 3.2 q g total gate charge (4.5v) v ds =15v , v gs =4.5v , i d =15a --- 20 28.0 nc q gs gate-source charge --- 7.6 10.6 q gd gate-drain charge --- 7.2 10.1 t d(on) turn-on delay time v dd =15v , v gs =10v , r g =3.3 i d =15a --- 7.8 15.6 ns t r rise time --- 15 27 t d(off) turn-off delay time --- 37.3 75 t f fall time --- 10.6 21.2 c iss input capacitance v ds =15v , v gs =0v , f=1mhz --- 2295 3213 pf c oss output capacitance --- 267 374 c rss reverse transfer capacitance --- 210 294 symbol parameter conditions min. typ. max. unit eas single pulse avalanche energy 5 v dd =25v , l=0.1mh , i as =24a 63 --- --- mj symbol parameter conditions min. typ. max. unit i s continuous source current 1,6 v g =v d =0v , force current --- --- 90 a i sm pulsed source current 2,6 --- --- 180 a v sd diode forward voltage 2 v gs =0v , i s =1a , t j =25 --- --- 1 v t rr reverse recovery time i f =30a , di/dt=100a/s , t j =25 --- 14 --- ns q rr reverse recovery charge --- 5 --- nc note : 1.the data tested by surface mounted on a 1 inch 2 fr-4 board with 2oz copper. 2.the data tested by pulsed , pulse width Q 300us , duty cycle Q 2% 3.the eas data shows max. rating . the test condition is v dd =25v,v gs =10v,l=0.1mh,i as =48a 4.the power dissipation is limited by 150 junction temperature 5.the min. value is 100% eas tested guarantee. 6.the data is theoretically the same as i d and i dm , in real applications , should be limited by total power dissipation. electrical characteristics (t j =25 , unless otherwise noted) guaranteed avalanche characteristics diode characteristics UB3006
3 n-ch 30v fast switching mosfets 0 30 60 90 120 150 180 00.511.522.53 v ds , drain-to-source voltage (v) i d drain current (a) v gs =10v v gs =7v v gs =5v v gs =4.5v v gs =3v 0 3 6 9 12 0 0.3 0.6 0.9 1.2 v sd , source-to-drain voltage (v) i s (a) t j =25 t j =150 0 2 4 6 8 10 0 6 12 18 24 30 36 42 q g , total gate charge (nc) v gs , gate to source voltage (v) i d =15a v ds =24v v ds =15v 0.2 0.6 1 1.4 1.8 -50 0 50 100 150 t j ,junction temperature ( ) normalized v gs(th) 0.2 0.6 1.0 1.4 1.8 -50 0 50 100 150 t j , junction temperature ( ) normalized on resistance typical characteristics fig.1 typical output characteristics fig.2 on-resistance vs. g-s voltage fig.3 forward characteristics of reverse fig.4 gate-charge characteristics fig.5 normalized v gs(th) vs. t j fig.6 normalized r dson vs. t j UB3006
4 n-ch 30v fast switching mosfets 10 100 1000 10000 1 5 9 13172125 v ds , drain to source voltage (v) capacitance (pf) f=1.0mhz ciss coss crss 0 1 10 100 1000 0.1 1 10 100 v ds (v) i d (a) 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 10 t , pulse width (s) normalized thermal response (r jc ) 0.02 0.05 0.1 0.2 duty=0.5 single p dm d = t on /t t jpeak = t c +p dm xr jc t on t 0.01 fig.8 safe operating area fig.9 normalized maximum transient thermal impedance fig.7 capacitance fig.10 switching time waveform fig.11 unclamped inductive switching waveform UB3006


▲Up To Search▲   

 
Price & Availability of UB3006

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X